organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Vasu,^a K. A. Nirmala,^b Deepak Chopra,^c* S. Mohan^d and J. Saravanan^e

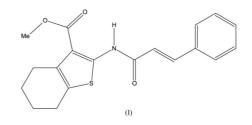
^aVivekananda Degree College, Bangalore 560 055, Karnataka, India, ^bDepartment of Physics, Bangalore University, Bangalore 560 056, Karnataka, India, ^cSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, ^dPES College of Pharmacy, Hanumanthanagar, Bangalore 560 050, Karnataka, India, and ^eMS Ramaiah College of Pharmacy, Bangalore 560 054, Karnataka, India

Correspondence e-mail: deepak@sscu.iisc.ernet.in

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.045 wR factor = 0.126 Data-to-parameter ratio = 12.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Methyl 2-{[(2*E*)-3-phenylprop-2-enoyl]amino}-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate

In the title compound, $C_{19}H_{19}NO_3S$, the thiophene ring is almost coplanar with the cinnamide moiety. An intramolecular $N-H\cdots O$ hydrogen bond forms a pseudo-six-membered ring, thus locking the molecular conformation and removing the conformational flexibility. In addition, the packing of molecules is stabilized by $C-H\cdots O$ interactions which form dimers. Received 31 March 2004 Accepted 2 April 2004 Online 17 April 2004

Comment

Most Schiff bases (Pellis & West, 1968; Cohen *et al.*, 1977; Csaszar & Morvay, 1983; Lakshmi *et al.*, 1985) and their thiophene derivatives (El-Maghraby *et al.*, 1984; Dzhurayev *et al.*, 1992; Gewald *et al.*, 1966) possess pharmacological activity such as antibacterial, anticancer, anti-inflammatory and antitoxic. Sulfur-containing Schiff bases are most effective. The title compound, (I), is found to exhibit antibacterial and antifungicidal activities (Mohan & Saravanan, 2002, 2003). In view of the medicinal application of such classes of compounds, a single-crystal study has been carried out on the title compound.

The bond lengths and angles in the cinnamoyl part of the molecule are similar to the reported values [C13-C14, C12-C13 and C11-C12 = 1.467(2), 1.315(3) and 1.475(2)Å, respectively, compared with 1.467 (2), 1.329 (3) and 1.485 (2) Å (Schmidt, 1964; Iwamoto et al., 1989)]. The molecule is almost planar. The torsion angle C11-N1-C1-S1 is 7.4 $(3)^{\circ}$, indicating that the plane of the thiophene ring is almost coplanar with the cinnamide moiety. The bond angle C14-C13-C12 of 126.6 (2)° is widened because of steric repulsion between the atoms H12 and H15. The angle between the mean planes of the cinnamoyl group and thiophene ring in the molecule is $9.94 (6)^{\circ}$. The observed dihedral angle between the vinyl moiety and the plane of the phenyl ring is 14 (2)° due to intramolecular $H(ortho) \cdots H(ethylenic)$ repulsion (Leiserowitz & Tuval, 1978). There is an intermolecular C19-H19···O3(2 - x, 1 - y, 2 - z) hydrogen bond, leading to formation of dimers. There is also an intramolecular N1-H1N···O1 hydrogen bond, leading to the formation of a conformationally locked pseudo-six-membered ring.

Experimental

The title compound was synthesized by mixing cyclohexanone (0.04 mol), ethyl cyanoacetate (0.04 mol), sulfur (0.04 mol) and 40 ml of ethanol and stirring the mixture at 325 K for 1 h with dropwise addition of 4 ml of dimethylamine to yield the ester. Alkaline hydrolysis of the ester group using sodium hydroxide solution yielded the acid which, on treatment with 3 mol of cinnamoyl chloride in presence of dioxan, yielded the final compound, (I). Single crystals of suitable quality were grown using a mixture of dimethylformamide and ethanol by slow evaporation at room temperature.

Crystal data

C ₁₉ H ₁₉ NO ₃ S
$M_r = 341.42$
Monoclinic, $P2_1/n$
a = 9.811 (3) Å
b = 9.590(3) Å
c = 18.870(5) Å
$\beta = 102.893 (5)^{\circ}$
$V = 1730.7 (9) \text{ Å}^3$
Z = 4

 $D_x = 1.310 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 575 reflections $\theta = 1.5 - 21.5^{\circ}$ $\mu = 0.20 \text{ mm}^{-1}$ T = 293 (2) KPrism, yellow $0.30 \times 0.25 \times 0.20$ mm

Data collection

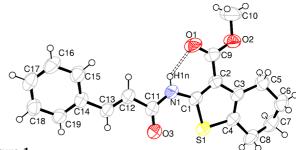
Bruker SMART CCD area-detector	3600 independent reflections
diffractometer	2765 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.021$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.3^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -12 \rightarrow 12$
$T_{\min} = 0.870, \ T_{\max} = 0.961$	$k = -11 \rightarrow 12$
13095 measured reflections	$l = -23 \rightarrow 21$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0709P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.045$	+ 0.2357P]
$wR(F^2) = 0.126$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} = 0.001$
3600 reflections	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
293 parameters	$\Delta \rho_{\rm min} = -0.24 \ {\rm e} \ {\rm \AA}^{-3}$
All H-atom parameters refined	

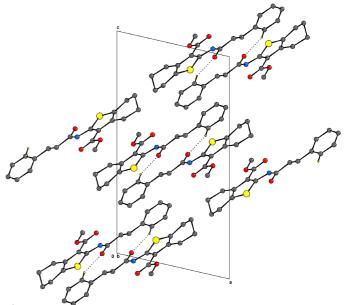
Table 1

Hydrogen-bonding geometry (Å, °).


$D - \mathbf{H} \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C19-H19\cdots O3^i$	0.88 (2)	2.62 (2)	3.455 (2)	159 (2)
$N1-H1N\cdots O1$	0.83 (2)	2.03 (2)	2.689 (2)	136 (2)

Symmetry code: (i) 2 - x, 1 - y, 2 - z.

All H atoms were located and refined isotropically. The C-H and N-H bond lengths are 0.91 (4)-1.02 (3) and 0.83 (2) Å, respectively.


Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2003).

We thank Professor T. N. Guru Row, Department of Science and Technology, India, for data collection on the CCD facility set up under the IRHPA-DST program and Bangalore University. One of the authors (Vasu) thanks Vivekananda Degree College for support.

ORTEP diagram, with 50% probability displacement ellipsoids. Dashed lines indicate the N-H···O hydrogen bond.

Figure 2

Packing diagram, viewed down the b axis, showing the $C-H \cdots O$ dimers. Other H atoms have been omitted.

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cohen, V. I., Rist, N. & Duponchel, C. (1977). J. Pharm. Sci. 66, 1322-1334.
- Csaszar, J. & Morvay, J. (1983). Acta Pharm. Hung. 53, 121-128.
- Dzhurayev, A. D., Karimkulov, K. M., Makhsumov, A. G. & Amanov, N. (1992). Khim. Form. Zh. 26, 73-75.
- El-Maghraby, A. A., Haroun, B. & Mohammed, N. A. (1984). Egypt. J. Pharm. Sci. 23. 327-336.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gewald, K., Schinke, E. & Botcher, H. (1966). Chem. Ber. 99, 94-100.
- Iwamoto, T., Kashino, S. & Haisa, M. (1989). Acta Cryst. C45, 1110-1112.
- Lakshmi, V. V., Sridhar, P. & Polasa, H. (1985). Indian J. Pharm. Sci. 47, 202-204.
- Leiserowitz, L. & Tuval, M. (1978). Acta Cryst. B34, 1230-1247.
- Mohan, S. & Saravanan, J. (2002). Indian J. Heterocycl. Chem. 12, 87-88.
- Mohan, S. & Saravanan, J. (2003). Asian J. Chem. 15, 67-70.
- Pellis, G. & West, G. B. (1968). Progress in Medicinal Chemistry, Vol. 5, pp. 320-324. London: Butterworth and Co. Ltd.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

- Schmidt, G. M. J. (1964). J. Chem. Soc. pp. 2014-2021.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.